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Interaction of High-Speed Compressible Viscous Flow and 
Structure by Adaptive Finite Element Method 

Wiroi Limtrakarn 
Mechanical Engineering Department, Thammasat University, Bangkok 12120, Thailand 

Pramote Dechaumphai* 
Mechanical Engineering Department, Chulalongkorn UniversiO; Bangkok 10330, Thailand 

Interaction behaviors of high-speed compressible viscous flow and thermal-structural re- 

sponse of structure are presented. The compressible viscous laminar flow behavior based on the 

Navier-Stokes equations is predicted by using an adaptive cell-centered finite-element method. 

The energy equation and the quasi-static structural equations for aerodynamically heated 

structures are solved by applying the Galerkin finite-element method. The finite-element 

formulation and computational procedure are described. The performance of the combined 

method is evaluated by solving Mach 4 flow past a fiat plate and comparing with the solution 

from the finite different method. To demonstrate their interaction, the high speed flow, 

structural heat transfer, and deformation phenomena are studied by applying the present method 

to Mach 10 flow past a flat plate. 
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{/Jr} : thermal conservation variable vector 

{ Us} " nodal displacement vector 

/'e : element boundary 

~2 : element domain 

: length of element sides 

e : total energy 

,~1, 22 : absolute second derivatives 

t9 : density 

1.  I n t r o d u c t i o n  

Fluid-Thermal-Structural  analysis methods 

have an important role in the design of high- 

speed flight vehicles, such as hypersonic air- 

breathing vehicles (Glass et al., 2002), fer pre- 

dicting vehicles" aerothermostructural perform- 

ance. Significant coupling occurs between high- 

speed flow phenomena, aerodynamic heating 

rates on structural surfaces, structural temperature 

and their gradients, as well as structural defor- 

mations and stresses, creating multidisciplinary 

interaction phenomena. High-speed flow phe- 
nomena normally include complex flow charac- 

teristics, such as shock waves, shock-shock inter- 
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actions, thin boundary layers and shock-boun- 

dary layer interactions (Anderson, 1982 ; Ander- 

son, i991). Such phenomena have been studied 

by a number of researchers using both the nu- 

merical simulations and experimental techniques. 

These include, as few examples, the study of 

shock motion by self-induced oscillation of an 

expanded jet impinging on a cylinder (Kim et al, 

2002), the experimental study for the flow cha- 

racteristic of the supersonic dual coaxial free jet 

(Baek et al, 2003), and the numerical simulation 

of shock wave propagation using the lattice 

Boltzmann method (Kang et al, 2003). Some of 

these characteristics, especially near the structural 

surface, generate aerothermal load to vehicle 

structure, and normally affect the structural tem- 

perature, deformation and stress. Under intense 

aerodynamic heating rate, structural temperature 

begins to rise within few seconds and significant 

deformation may occur. In addition, the deformed 

structure may significantly alter the high-speed 

flow behavior and thus the aerothermal loads. 

These coupled effects indicate that the analysis of 

high-speed flow-structure interaction is an im- 

portant consideration to high-speed vehicle de- 

sign. Such coupled effects have been studied by a 

number of researchers recently. Computational 

fluid and structural dynamics commercial pro- 

grams were combined together for predicting the 

flow and structure behaviors (Baum, 2002; 

Lohner et al., 2003). A parallel multilevel method 

for adaptively refined grids was introduced 

(Aftosmis et al., 2000) to reduce the overall com- 

putational effort. Embedded boundaries between 

the flow and the structure were proposed to 

effectively transfer information between the two 

different disciplines. The approach was later 

extended for unstructured grids to minimize the 

computational time and memory required for the 

flow analysis. The examples presented in these 

references, however, do not include the thermal 

response of the structure due to the intense 

aerodynamic heating rate from the high-speed 
flow. 

In the present paper, an integrated flow-ther- 
mal-structural analysis approach for predicting 

each disciplinary behavior and their interaction is 

presented. The study of the interactions is a 

preliminary, but important, step toward the ob- 

jectives of analyzing more realistic structures, 

such as thermal protection systems and scramjet 

engine structures. For  high-speed compressible 

flows, the ceil-centered finite-element method 

(Gnoffo, 1986; Dechaumphai and Limtrakarn, 

1999) is combined with an adaptive meshing 

technique to solve the Navier-Stokes equations. 

Based on the solution obtained from the previous 

mesh that could be either the initial or adaptive 

mesh constructed earlier, the adaptive meshing 

technique generates an entirely new mesh that 

consists of small elements in the regions with 

large change in solution gradients and large 

elements in the other regions where the change in 

the solution gradients is small. The combined 

technique is used to improve the efficiency of the 

finite-element flow solution and the accuracy of 

the aerothermal loads, as well as to reduce the 

computational time and the computer memory. 

The Galerkin finite-element method is applied to 

solve the structural energy equation for tempera- 

ture distribution and the structural equations for 

deformation and stress. The paper starts by 

explaining the theoretical formulation of high- 

speed compressible flow, structural heat transfer, 

and structural response. Then the solution proce- 

dure for flow-thermal-structural interaction pro- 

blem is presented. The basic idea behind the 

adaptive meshing technique is then described. The 

efficiency of the combined procedure, the cell- 

centered finite-element method and the adaptive 

meshing technique, is evaluated by solving the 

Mach 4 flow past a flat plate and comparing 

results with those obtained from the finite-differ- 

ence method. The high speed flow, structural heat 

transfer, and deformation behaviors are then stu- 

died by applying the present method to Mach 10 

flow past a flat plate to demonstrate their inter- 

disciplinary coupling. 

2. Theoretical Formulation and 
Solution Procedure 

2.1 Governing equations : 

The equations for the high-speed compressible 
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flow, the structural heat transfer, and the struc- 
tural analysis in two dimensions are described 
below. 

High-speed compressible viscous flow 
The equations for high-speed compressible 

viscous laminar flow are represented by the con- 
servation of mass, momentum, and energy. These 
equations are written in the conservation form 
(Hirsch, 1988) as 

where the subscript F denotes the fluid analysis. 
The vector { UF } contains the fluid conservation 
variables defined by o 

{ UF }= On (2) 
pv 
pe 

where p is the fluid density, u and v are the 
velocity components in the x and y directions, 
respectively, and e is the total energy. The vectors 
{ E } and { F } consist of the flux components in 
the x and y directions, respectively (Dechaum- 
phai and Limtrakarn, 1999). 

Structural heat transfer 
The thermal response of the structure is des- 

cribed by the energy equation in the conservation 
tbrm as 

f f  t Ur + -~xx E r + a@ Fr = Gr (3) 

where the subscript Tdenotes the structural heat 
transfer analysis. The vector UT contains the 
thermal conservation variable defined by 

U r = p c T  (4) 

where c is the specific heat of structure. The heat 

flux components Er and F r  are 

aT - k  OT (5) Er = -- k ~ f -  and F r  = Oy 

and GT is the heat source. 

Structural response 
The structural response is governed by the 

quasi-static equilibrium equations given by 

ax { 0  Es }+ o@{ Fs }=O (6) 

where the subscript S denotes the structural 
analysis. The flux vector components { Es } and 
{ Fs } are 

rx, ~ (7) { E s } : { ~ }  and { f s } = { a y  , 

where the stress components ax, ay, and r~ are 
related to the strain and the temperature by the 
generalized Hook's law (Beer et al., 2002). 

2.2 F i n i t e - e l e m e n t  f o r m u l a t i o n  : 

The cell-centered finite-element method is ap- 
plied to the Navier-Stokes equations to derive the 
finite-element equations. The Galerkin finite ele- 
ment approach is applied to the structural heat 
transfer equation and the equilibrium equations 
to derive the corresponding finite-element equa- 
tions. The derivation procedures are briefly 

described below. 

Finite-element flow equations 
The method of weighted residuals (Zienkiewicz 

and Taylor, 2000) is applied to Eq. (1) over the 
element domain, X2, by using a unit interpolation 
function as 

The Gauss divergence theorem is then applied 
to the flux integral terms of Eq. (8) to yield, 

where the flux vectors { GI } and { Gv } are the 
inviscid and viscous flux vectors of { EI+F1 } 
and { Ev+Fv }, respectively, and h is the unit 
vector normal to the element boundary, Fe. 
Equation (9) is evaluated by summing the nor- 
mal fluxes from all sides, -Pc, of the element. The 
fluxes normal to the element sides are then 
approximated by the numerical inviscid and 
viscous fluxes, ( (~r } and { Gv ). By applying an 
explicit time marching algorithm (Hirsch, 1988), 
Eq. (9) becomes 

A,  (U;+I U;}=_ESs({~i} . j f_{~g})  (lO) 
At  s 
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where U,P ÷l and UP are the conservation vari- 

ables at the time steps n + 1 and n, respectively ; 

Ae is the element area;  ~s is the length of the 

element side being considered as shown in Fig. 1 

and the summation is performed for all sides. At  

is the allowable time step following the CFL and 

viscous stability requirement (Dechaumphai and 

Limtrakarn, 1999). 

The basic concept behind the cell-centered fi- 

nite-element method used in this paper is to 

determine the flux across element interfaces by 

using the Roe's averaging procedure. The average 

inviscid flux, Gz, is given by 

G,=~[G~+Gf+IA*I(U~-U~)] (11) 

where the superscripts L and R denote the left 

and right elements, respectively. The last term in 

Eq. (11) may be viewed as an artificial diffusion 
needed for the solution stability. This diffusion is 

represented by the product of the Jacobian matrix 

EA*] and the difference between the left and right 
element conservation variables U~ and Ur R (Lim- 
trakarn and Dechaumaphai, 2003). 

The average viscous flux, Gv, in Eq. (10) nor- 

mal to the element edge and its components 
consist of the stress and heat flux components that 

are in the form of the first-order derivative of u, 
v, and T (Hirsch, 1988). These derivative terms 
are computed from the nodal variable gradients. 
As an example, the temperature gradient at node 

K in Fig. 2, 3TK/3x, can be determined as 
follows. First, the temperature gradient of an ele- 

ment can be expressed as, 

3T aT 
3x ---- IN] { ~ -  } (12) 

where [_NJis the element interpolation function 

matrix. The method of weighted residuals is ap- 

plied to Eq. (12) to yield, 

Integration by parts is then applied to the integral 

term on the left-hand-side of Eq. (13). 

where Ts is the temperature of the boundary, and 

[M] = L {  N }[NJdS2 (15a) 

For the explicit algorithm, the consistent matrix, 

[M],  in Eq. (15a) is written in the form of the 

lumped mass matrix, FM]l~mped, given by, 

,I '  °!1 [M] lumpea = 0 1 (15b) 
L0 0 

Then, Eq. (14) becomes, 

3T . d F - f  - ~ -  T d~2 (Mlurnped) K-ff~- K=fren TsNK ( 16) 

Also, the average temperature gradient at node K 
is computed from the contribution of the sur- 

rounding elements as, 
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The other derivative terms needed for computing 
the stress and heat flux components can be de- 
rived using the same procedure above. 

By substituting Eq. ( l l )  into Eq. (10), then 

Eq. (10) becomes 

At {Ae Ug+,_ U~} =--~as[lGf}+{Gf} 
+IA'I({Uk}-{U~})] (18) 

$ 

Finite-element structural heat transfer equations 
The method of weighted residuals is applied to 

Eq. (3), over the element domain, ~2, by assuming 
a linear distribution of  the conservation variable, 
Ur, and the flux components E r  and F r  in the 

form, 

Ur(x, y, t )=LN(x,  y)J{ UT(t)} (19a) 
Er(x, y, t )=[N(x ,  y)J{ E r ( t ) }  (19b) 
Fr(x, y, t )=LN(x,  y)J{ Fr(t)}  (19c) 

where LN(x, y)] is the linear interpolation func- 
tion matrix. The finite-element equations can 
then be derived in the form : 

[M]{ AUr }"+t={ Rr }'I+{ Rr }~ (20) 
where [M] is the mass matrix, and { A Ur },+1= 
{ Ur }n+z_{ (Jr }n at time n + l .  The { R r  }~' and 
{ R r  }~' vectors are associated with the therma 
1 fluxes within each element and across the ele- 
ment boundary, respectively, and are given by, 

(21) 

{ Rr }~'=-fr{ N }(E~nx+F~n,) dF (22) 
Finite-element structural equations 

The Galerkin finite-element method is applied 
to Eq. (6) in the same fashion as in the structural 
heat transfer analysis. The finite-element equa- 
tions can also be derived in the form: 

[K]{ U s } = { R s } + { R r }  (23) 

where [K]  is the stiffness matrix, { Us } is the 
nodal displacement vector, { Rs } is the external 
load vector, and { Rr  } is the thermal load vector. 

These matrices are defined by 

[K] ----f~[B] r[c] [B] d.Q (24) 

{ Rs }=fr  [N] r{ Fs }dF (25) 

{ R r } = f ~ [ B ] r [ C ] { a } ( T - T o )  dS2 (26) 

where [B] is the strain-displacement interpola- 

tion matrix, [C] is the elastic modulus matrix, 
{Fs} is the surface traction matrix, { a }  is the 
thermal expansion coefficient vector, and To is 
the reference temperature for zero stress state. 

2.3 Solution sequence 

For high-speed compressible flows, the flow 
behavior normally approaches a steady state 
much taster than that of the thermal and struc- 
tural response of the structure. Typically, the 
heating rate approaches a steady state in about 
few milliseconds. At this time, the structural con- 
figuration remains nearly undeformed at a tem- 
perature only slightly higher than the initial tem- 
perature. After few seconds, the structural tem- 
perature begins to rise appreciably and significant 
deformation may occur. At this time, thermal and 
deformation coupling effect can alter the flow 
field. The coupling effect continues to alter the 
flow and structure behavior until the structure 
reaches the state of the thermal equilibrium. 

Based on the fact that the high-speed flow 
behavior normally reaches the steady-state con- 
dition in a much shorter time than the structural 
response, the analysis procedure of the flow- 
structure interaction presented in this paper 
consists of the solution sequence as described by 
Fig. 3. This solution sequence can reduce the total 
computational time by avoiding detailed transient 
flow analysis that requires significant computa- 
tional effort (Limtrakarn, 2003), At the initial 
time, t----t0, the adaptive cell-centered finite-ele- 
ment method is first used to predict the high- 
speed flow behavior as denoted by FA (Flow 
Analysis). The flow analysis generates aerother- 
real loads that include heating rate and pressure 
along the structural surface. After a short interval 
of time at t =  h, the predicted aerodynamic heat- 
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Initial time te lip Time tl It Time t2 . . . . .  I~ 

@ ~  High-speed analysis T ~  Stt~ttwai heat transfer analysis flow 

= response analysis Structural 

Fig. 3 Solution sequence of flow-structure interac- 
tion for high-speed flow over a flat plate 

ing rate is applied to the structural configuration 

and the structural heat transfer analysis as de- 

noted by TA (Thermal Analysis) is used to solve 

the structural temperature. Both the structural 

temperature and the fluid pressure are then used 

to predict the structural response for deformation 

and stresses as denoted by SA (Structural Ana- 

lysis). The same sequence is repeated to predict 

the new flow field behavior, the aerothermal 

loads, the structural temperature, as well as the 

new structural deformation and stresses. 

3. Adaptive Meshing Technique 

Adaptive mesh generation techniques may be 

classified into two major categories: 1) reflne- 

ment/derefinement, and 2) remeshing. The first 

category, the adaptive refinement/ derefinement 

technique, can be further classified into three 

subcategories : a) the h method, b) the p method, 

and c) the r method. In the h method, the ele- 

ments in the initial mesh are refined into smaller 

elements or dereflned into larger elements (Rama- 

krishnan et al., 1990). The p method maintains 

the geometry of the elements of the initial mesh 

but increases (or decreases) the order of the poly- 

nomials used for the element interpolation func- 

tions (Dechaumphai, 1982). The r method keeps 

the number of elements and their connectivities 

the same but relocates the nodes (Lohner et al., 

1984). 

The remeshing technique, the second adaptive 

mesh-generation category, generates an entirely 

new mesh based on the solution obtained from an 

earlier mesh (Dechaumphai, 1995 ; Peraire et ak, 

1987). The technique is combined with the cell- 

centered finite-element method in this paper to 

obtain solutions of high-speed compressible flow 

problems. The idea is to construct a new mesh 

that consists of small elements in the regions with 

large change in solution gradients and large 

elements in the other regions where the changes in 

the solution gradients are small. As an example, 

small elements are needed in the regions of shock 

waves to capture shock resolution, whereas larger 

elements can be used in the free-stream region 

because the flow behavior is uniform. To deter- 

mine proper element sizes at different locations in 

the flow field, the solid-mechanics concept of 

determining the principal stresses from a given 

state of stresses at a point is employed. Since the 

fluid density changes abruptly across the shock 

waves, thus the density distribution can be used as 

an indicator for the determination of proper 

element sizes. 

Because small elements must be placed in the 

region of the shock wave where large changes in 

the density gradient occur, the second derivatives 

of the density at a point with respect to global x 

and y coordinates are needed to compute, 

~2p ~p 
Ox ~ OxOy 

(27) a2p o~p 
OxOy Oy 2 

Then the principal quantities in the principal X 

and Ydirections, where the cross-derivatives va- 

nish, are determined, 

A= 02p 22= 02p and ~ -  (28) 

These principal quantities are then used to com- 

pute proper element sizes, hi and h2, in the two 

principal directions using the following condition 

(Oden and Carey, 1981), 

2 2 n 2 hlAl=h2A2=consta t = hminAmax (29) 

where hml~ is the specified minimum element size, 

and 2max is the maximum principal quantity for 

the entire model. 

Based on the condition in Eq. (29), the element 
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sizes are generated according to the given mini- 

mum element size hr~n. Specifying too small h~n 

may result in a model with an excessive number of 

elements. On the other hand, specifying too large 

hn~n may result in an inadequate solution accura- 

cy or excessive analysis and meshing cycles. These 

factors must be considered prior to generating a 

new mesh. Note that, because the technique gener- 

ates an entirely new mesh with different nodal 

locations from the old mesh, interpolation of the 

solution from the old to the new mesh should be 

used to increase the analysis solution conver- 

gence. 

4. Applications 

A Mach number 4 flow past a flat plate is pre- 

sented as the first example to validate the adaptive 

cell-centered finite-element method for high- 

speed flow analysis and to compare the results 

with those obtained from the finite-difference 

method. Then the performance of the propos- 

ed high-speed flow-structure interaction proce- 

dure is evaluated by Mach number l0 flow past a 
flat plate. 

4.1 Maeh  4 flow past a f lat plate:  

The problem statement of a mach 4 flow past a 

fiat plate as shown in Fig. 4 was taken from a 

reference (Anderson, 1995) that presents the ana- 

lysis solution by using the finite-difference meth- 

od. The flow enters through the left boundary of 

the computational fluid domain. The shock wave 

is created from the leading edge as highlighted in 

the figure. The inlet flow conditions consist of 

specifying p = l . 2 2 5 2 k g / m  a, u = l , 3 6 1 m / s ,  v = 0 ,  

e=l ,133,080J/kg,  R e = 9 3 2  with the wall tem- 

perature of 288.16K. The combined method of the 

cell-centered finite-element analysis and the 

adaptive meshing technique is applied to solve the 

problem. Figure 5(a) shows the final adaptive 

mesh that consists of small elements clustered 

along the shock line from the sharp leading edge. 

The accuracy of  the shock resolution and the 

shock angle strongly depends on the finite ele- 

ment mesh near the sharp leading edge. To cap- 

ture the aerodynamic heating rate accurately, 

graded quadrilateral elements normal to the flat 

plate are generated to capture the thin boundary 

layer along the flat plate and in the leading edge 

region as shown in the figure. The total of 10,353 

triangular elements are generated in the inviscid 

region and 4,011 quadrilateral elements in the 

boundary layer. Figure 5 (b) shows the predicted 

density contours with high value at the leading 

edge. 

As the flow encounters the leading edge, the 

fluid particles stop at the leading edge stagnation 

point. The oncoming freestream thus sees the 

leading edge as a blunt body. A viscous boundary 

layer region is then created between the plate and 

the induced shock wave. The lost kinetic energy 

from viscous dissipation then transforms into the 

internal energy, causing aerodynamic heat trans- 

fer rate and changing flow field temperature in the 

boundary layer region. 

The predicted u-velocity distribution is nor- 

malized with the freestream velocity, u~, and 

M=4 

Computational domain 

I _  
- - ~  .2L i -  L 

Fig. 4 Mach 4 flow past a flat plate 

Shock w a v e ~  

F ~ ~ ; ~ ; 7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

! I, ~ 9 ~  ~ \  ---I,f- L ~ 

3 _--J 

(a) Final adaptive mesh (b) Density distribution (kg/m 3) 

Fig. 5 Final adaptive mesh and corresponding den- 
sity contours for roach 4 viscous flow past a 
flat plate 
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Comparative normalized u-velocity distribu- 
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fiat plate 
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Fig. 7 
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(Anderson, 1995) 

o Combined method 

0 J 
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Comparative normalized temperature distri- 
butions along normalized y distance at the 
flow exit (x=L)  for mach 4 viscous flow 

past a flat plate 

compared with the finite difference solution along 

the y-direction at the flow exit as shown in Fig. 

6. The figure shows good agreement between the 

finite-element and the finite-difference solutions. 

At the flow exit, the u-velocity decreases slightly 

across the plate shock wave, and then reduces 

abruptly within the thin boundary layer to zero at 

the plate surface. 

The predicted temperature distribution is nor- 

malized and compared with the finite difference 

solution along the y-direction at the same flow 

exit location as shown in Fig. 7. The figure shows 

the flow temperature increases slightly across the 

plate shock wave. The flow temperature then in- 

creases again before decreasing rapidly to the 

0.10 

q/qx~a 0.05 

Fig. 8 

0.00 
0.0 

I I 
0,5 1.0 

rdL 

Predicted heating rate distribution along the 
plate for mach 4 viscous flow past a flat plate 

plate temperature within the thin boundary layer. 

Such steep flow temperature gradient next to the 

plate thus introduces aerodynamic heating rate on 

the plate. 
The comparison between the two solutions 

shows good agreement with high temperate gra- 

dient in the thin thermal layer near the plate. The 

predicted flow temperature for the elements near 

the plate is also used to compute the temperature 

gradient and then the heating rate that occurs on 

the plate. Figure 8 shows the computed heating 

rate distribution along the plate, showing high 

value at the leading edge. Small quadrilateral 

elements are needed in the thin boundary layer to 

provide accurate heating rate solution. The ex- 

ample highlights the benefit of the adaptive 

meshing technique that can generate proper ele- 

ment sizes automatically to provide high solution 

accuracy with reduced total number of unknowns 

and thus the computational time. 

4.2 M a e h  10 f low past  a f lat  plate  : 

The performance of the high-speed flow-struc- 

ture interaction analysis procedure is evaluated by 

the example of Mach 10 flow past a flat plate as 

illustrated in Fig. 9. The flow enters through the 

left boundary of the computational fluid domain 

and creates a shock wave from the leading edge as 

highlighted in the figure. The inlet flow con- 

ditions consist of specifying p=4.303E-05kg/m a, 
u=l ,418.7m/s ,  v = 0 ,  e=l,043,000J/kg, R e = 5 ,  

580 with the wall temperature of 288.16K. The 

flow-thermal-structural interaction of the flat 

plate was analyzed using the solution sequence 
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O.15m 

~ l i o n a l  domain 

0005m--~,- 9m-.-- 0 . 1 m ~  0.1m -- 0.1m 

(a) Problem statement 

Aerodynamic heating rate 

f 1 

lasalat~l ~ ~ ' a i ~  

(b) Boundary condition for (c) Boundary condition for 
heat transfer analysis structural analysis 

Fig. 9 Math 10 flow past a flat plate 

shown in Fig. 3. At the initial time, t = 0  second, 

the flow field behavior is predicted by using the 

cell-centered finite-element method. Based on 

this flow solution, the adaptive meshing technique 

as described in the preceding section is then 

applied to obtain the adaptive mesh as shown in 

Fig. 10(a). Small elements are automatically ge- 

nerated along the shock line to improve shock 

resolution and larger elements in other regions. A 

total of  13,727 triangular elements are generated 

in the inviscid region and 7,560 quadrilateral  

elements inside the boundary layer. Ten graded 

layers of  quadrilateral  elements are used inside 

the boundary layer to capture steep temperature 

gradients for the accurate aerodynamic heating 

rate prediction. The predicted flow solution is 

shown by the density contours in Fig. 10(b). 

With the predicted aerodynamic heating rate from 

the flow analysis at time t = 2  seconds, the struc- 

tural heat transfer analysis is used to predict the 

temperature distribution on plate surface between 

0 . 1 < x < 0 . 2 m .  At the same time, the quasi-static 

structural analysis is performed to compute the 

corresponding structural deformation. The com- 

putational fluid domain is then updated by the 

deformed plate and the cell-centered finite-ele- 

ment method is applied to predict the new flow 

field behavior. The adaptive meshing technique is 

(a) Adaptive mesh 

1.0 
0.6 

1.2 

(b) Density distribution (x 10-4kg/m 3) 

Fig. 10 Adaptive mesh and corresponding density 
contours for Mach 10 flow past a fiat plate at 
t=0sec  

again applied to generate the new adaptive mesh 

as shown in Fig. l l ( a ) .  The shock pattern is 

altered by the convex deformation of  the plate 

surface while small elements are automatically 

clustered to capture the new shock pattern. The 

corresponding fluid density contours are shown 

in Fig. 11 (b). The fluid density increases through 

the shock wave and decreases as the fluid flows 

across the convex center of  the plate along the left 

support toward the right support. The entire 

analysis procedure is repeated to compute the 

plate deformation shape and the new flow field 

behavior at time t~-4 seconds as shown in Fig. 

12. The figure shows the development of the 

shock emanating from the left support on the 

windward side of  the deformed plate. As the plate 

deforms into the flow field, the boundary layer 

thickness is altered over the plate, becoming 

thinner after the flow encounters the left support 

and then it is thicker as the flow approaches the 

right support of  the plate. Figures 13 and 14 

compare the predicted aerodynamic heating rates 

and the pressures, respectively, for 0 < x <  (0.3m. 

The effect of  both the f luid/plate  heat transfer and 
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(a) Adaptive mesh 

1.0 
0.6 

1.2 

(b) Density distribution (x 10-4kg/m s) 

Fig. 11 Adaptive mesh and corresponding density 
contours for Mach 10 flow past a flat plate at 
t = 2 sec 

the plate deformation causes the heating rate and 

the pressure to increase for 0.1 < x  <0.2 as shown 

in the figures. The change in heating rates at x = 

0.1 and 0.2m. is associated with the boundary 

thinning and thickening, respectively. These 

figures highlight the interdisciplinary coupling 

between the flow field and the deformed plate. 

The heated plate can deform into the flow field, 

and at the same time, the altered flow field can 

change the aerothermal loads of the heating rate 

and the pressure on the plate. 

5. C o n c l u d i n g  R e m a r k s  

The multidisciplinary interaction behaviors of 

high-speed compressible flow, structural heat 

transfer, and structural response were presented 

using the adaptive finite-element method. The 

finite-element method based on the cell-centered 

algorithm was used to predict the high-speed 

compressible flow behavior. The method was 

combined with the adaptive meshing technique to 

improve the flow accuracy. The technique gener- 

ates an entirely new mesh based on the solution 

(a) Adaptive mesh 

I 
1.0 
0.6 

1.2 

(b) Density distribution (x 10-4kg/m s) 

Fig. 12 Adaptive mesh and corresponding density 
contours for Mach l0 flow past a flat plate at 
t =4sec 

obtained from the previous mesh. The new mesh 

consists of the clustered elements in the region 

with large change in the solution gradients to 

provide the high accuracy, and large elements are 

generated in the other regions to minimize the 

computational time and computer memory. The 

Galerkin finite-element method was used to 

predict the structural heat transfer and structural 

response behaviors. The finite-element formula- 

tion, the computational procedure and the basic 

idea behind the adaptive meshing technique were 

described. The Mach 4 flow past a flat plate was 

the first example used to validate the high-speed 

flow solution by comparing results with those 

obtained from the finite-difference method. Both 

solutions were found to be in good agreement. 

The Mach 10 flow past a flat plate was then used 

to study the flow-structure interaction and to 

evaluate the performance of the proposed analysis 

procedure. The later example highlights the 

interaction behavior between the high-speed flow 

and the thermal-structural response of the struc- 

ture. These examples demonstrate the capability 

of the proposed high-speed compressible viscous 
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0.10 

q/q,-o 0.05 

Fig. 13 

- -  4 s e c .  

- -  - 2 see. 

I I I 

0.1 0.2 0.3 
x (m) 

Heat flux distributions for Mach 10 flow 
past a flat plate 

0.8 

- -  4 see. 
0.6 - -  - 2 s e c .  

........ 0see. 

p/px-0 0.20"4 

0 I l I 
0 0.1 0.2 0.3 

x (m) 

Fig. 14 Pressure distributions for Mach 10 flow past 
a flat plate 

flow and the thermal-structural analysis methods 

for simulating fluid-structure interaction beha- 

vior. 
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